
Design Project Final Report
CleaverWall

Arda Barış Örtlek

Ali Emre Aydoğmuş

Onur Korkmaz

Selahattin Cem Öztürk

Yekta Seçkin Satır

Supervisor: Özcan Öztürk

Jury Members: Erhan Dolak, Tağmaç Topal

This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfillment of the
requirements of the Senior Design Project course CS491/2.

1. Introduction 4
2. Requirements Details 6

2.2 Functional Requirements 6
2.2.1 User Functionalities 6
2.2.2 System Functionalities 6

1.1 Non-functional Requirements 6
2.2.1 Usability 6
2.2.2 Security and Privacy 7
2.2.3 Reliability 7
2.2.4 Scalability 7
2.2.5 Maintainability 7

3. Final Architecture and Design Details 7
3.1 Subsystem decomposition 9
3.2 Subsystem Services 10

3.2.1 Client 10
3.2.1.1 Presentation Tier 11
3.2.1.2 Logic Tier 12
3.2.1.3 Data Tier 13

3.2.2 Main Server 14
3.2.2.1 Logic Tier 14
3.2.2.2 Data Tier 15

3.2.3 Ubuntu Server 15
3.2.3.1 Logic Tier 15
3.2.3.2 Data Tier 16

4. Development/Implementation Details 16
4.1 Client Side 16
4.2 Server Side 17
4.3 Machine Learning Side 18

5. Test Cases and Results 19
5.1 Client Side Test Cases 19
5.2 Server Side Test Cases 25
5.3 Test Cases for Algorithms for Machine Learning 35

6. Maintenance Plan and Details 45
6.1 Regular Updates: 45
6.2 Bug Fixes: 45
6.3 Performance Optimization: 45
6.4 Security Updates: 45
6.5 Database Maintenance: 45
6.6 Disaster Recovery and Backup Strategy: 45
6.7 Continuous Testing and Quality Assurance: 45

7. Other Project Elements 46
7.1. Consideration of Various Factors in Engineering Design 46

7.1.1 Public Safety 46
7.1.2 Public Welfare 46

2

7.1.3 Global Factors 46
7.1.4 Cultural Factors 46
7.1.5 Social Factors 46

7.2. Ethics and Professional Responsibilities 47
7.3. Teamwork Details 47

7.3.1. Contributing and functioning effectively on the team 47
7.3.2. Helping creating a collaborative and inclusive environment 48
7.3.3. Taking lead role and sharing leadership on the team 48
7.3.4. Meeting objectives 49

7.4 New Knowledge Acquired and Applied 50
8. Conclusion and Future Work 50
9. Glossary 52
10. References 53

3

1. Introduction
Malware detection is a trending topic since the 1980s and it is becoming more significant due
to the immense increase in malware programs. Even though there is use of different
approaches, most of the open-source anti-malware programs rely upon signature based
methods. CleaverWall optimizes this method commonly used in the industry by developing
an application that totally depends on machine learning to eliminate the disadvantages of
signature based detection methods. CleaverWall is an anti-malware mechanism to detect
whether a portable executable is malicious, if so, to classify the malware type. For the
classification process, a set of malware classifiers trained with various machine learning and
deep learning techniques are used. Static and dynamic analysis are conducted to create
different feature vectors for the models. Those different classifiers work collaboratively to
decrease the false positive occurrences.

CleaverWall consists of 4 labels which are Benign, Trojan, Virus and Worm. Benign is
utilized to represent non harmful executables. Other labels represent 3 different types of
malware families.

In static analysis, the application has 2 different approaches. The first approach collects
features from PE header and classifies the executable according to them.

Machine SizeOfOptionalHeader Characteristics MajorLinkerVersion MinorLinkerVersion

SizeOfCode SizeOfInitializedData SizeOfUninitializedData AddressOfEntryPoint BaseOfCode

BaseOfData ImageBase SectionAlignment FileAlignment MajorOperatingSystemVersion

MinorOperatingSystemVersion MajorImageVersion MinorImageVersion MajorSubsystemVersion MinorSubsystemVersion

SizeOfImage SizeOfHeaders CheckSum Subsystem DllCharacteristics

SizeOfStackReserve SizeOfStackCommit SizeOfHeapReserve SizeOfHeapCommit LoaderFlags

NumberOfRvaAndSizes SectionsNb SectionsMeanEntropy SectionsMinEntropy SectionsMaxEntropy

SectionsMeanRawsize SectionsMinRawsize SectionMaxRawsize SectionsMeanVirtualsize SectionsMinVirtualsize

SectionMaxVirtualsize ImportsNbDLL ImportsNb ImportsNbOrdinal ExportNb

ResourcesNb ResourcesMeanEntropy ResourcesMinEntropy ResourcesMaxEntropy ResourcesMeanSize

4

ResourcesMinSize ResourcesMaxSize LoadConfigurationSize

Table 1: Feature list for the first static model.

The second approach is to represent an executable file as a grayscale image by interpreting
every byte as one pixel in an image, ranging from 0 to 255. This approach reduces malware
classification problem to image classification problem on which Convolutional Neural
Networks are very efficient. Studies show that images of the same malware families are
similar to each other while they are distinct from images of other families [1], [2], [3].

Figure 1: The first row represents Yuner.A samples, the second row represents VB.AT samples and the third row
represents Skintrim.N samples [4].

In dynamic analysis, a portable executable’s Windows API call sequence is analyzed to create
the feature vector [5]. For this purpose, an executable is run on a sandbox for an amount of
time. After that, the sandbox returns information regarding the API call sequence. Cuckoo
Sandbox [6] is utilized as the sandbox.

Since CleaverWall is an open source project, we initially do not aim to compete with
premium services. However, open source anti-malwares such as ClamAV and other
applications using only signatures based detection methods perform poorly. Therefore, our
goal is to surpass them on both evaluation and performance metrics due to our machine
learning approach. As we improve our application, we want to change the case that reliability
is expensive.

5

2. Requirements Details
2.2 Functional Requirements

2.2.1 User Functionalities

Users can:
● Scan a portable executable file through the desktop or the web app,
● Scan a windows directory,
● Demand further analysis with other heavier machine learning models,
● View the detailed log of scan results,
● Schedule an auto-scan process for a specific file path,
● Determine options such as quarantine or deletion for a scanned portable executable

file which is detected as malicious.
● View previous scan results.

2.2.2 System Functionalities

The server can:
● Accept portable executable files,
● Apply static and dynamic analysis on them,
● Return the results,
● Save the obtained data to a database.

Desktop application can:
● Use models of different weights to scan a portable executable file statically,
● Scan directories,
● When needed, send files to server for further analysis,
● Display the results,
● Quarantine detected malwares & delete them on demand,
● Present a UI.

Web client can:
● Display a UI that accepts portable executable files,
● Display the results,
● Display information about the system.

1.1 Non-functional Requirements

2.2.1 Usability

● Our graphical user interface will be clear and intuitive to increase the ease of usage.
● We will ensure that the graphical user interface styles of the desktop application and

the web server are similar to each other so that our customers will not have a hard
time when they switch the service that they are using.

6

2.2.2 Security and Privacy

● We will ensure that the uploaded files will be safe against cyber attacks.
● We will ensure that our classification model can not be disturbed by outside forces.
● Newly obtained and saved data to improve the machine learning model should not be

disturbed by outside forces.

2.2.3 Reliability

● We will ensure that our classification model can classify mainstream malware
families.

● By using the newly saved data, our classification model should be able to increase its
accuracy.

2.2.4 Scalability

● The server should be able to analyze multiple files that are uploaded by different users
concurrently.

2.2.5 Maintainability

● The mean time to restore the system following a system failure on the server side
must not be greater than 10 minutes. The mean time to restore the system includes all
corrective maintenance time and delay time.

3. Final Architecture and Design Details
We have used several technologies in the development of the project. For the client side, we
have used Flutter to implement the user interface and controller logic. Flutter provides
building the application for both web and desktop clients. For the main server side, we have
used Django Framework to implement the back end. Any requests for static analysis and
information about past submissions are handled on the main server. The data about
submissions and users are stored in an SQLite database. Two static analysis models that
classify the file by the header information and image recognition reside on the main server.
Any dynamic analysis request is directed to the Ubuntu server by an HTTP request. The back
end for the Ubuntu server is implemented using the FastApi framework since the workload
for the back end is low. The information required for the Dynamic analysis model is obtained
by Cuckoo Sandbox. The sandbox runs the portable executable file on a Windows 7 virtual
machine that is emulated by the QEMU framework. Then, it sends the information about the
execution like the number of API calls to the management logic which classifies the file by
the dynamic analysis model. Finally, the result is stored in the main server and sent to the
client. The models are implemented by Tensorflow and optimized using XGBoost.

7

Here is the diagram for the final architecture. The subsystem decomposition and its services
are explained in the next section.

Figure 2: Diagram for final architecture: Hardware-Software mapping.

8

3.1 Subsystem decomposition

Figure 3: Subsystem decomposition of the whole system.

CleaverWall is based on server-client architecture. There are two types of applications on the
client side, the web application and the desktop application. Both sides are being developed
using Flutter. There are three subsystems on the client side, Presentation Tier and Logic Tier,
and Data Tier. Presentation Tier will handle basic user interface functionalities. Specifically,
it is the layer of widgets and states environment in the Flutter framework. Logic Tier will
handle processing the data sent by the Main Server, logging in, and switching between pages.
Data Tier will handle repositories and data structures that are used to illustrate in the view.
After developing the web client, the code will be transferred to the desktop application using
Flutter’s service. Then, Logic Tier of the desktop application will be extended for more
functionalities such as offline static analysis.

There are two servers that will be used in the project. A main server will be used to
communicate with the client, maintain crud operations in the database, do static analysis, and
communicate with the side server when the dynamic analysis is needed. Main Server is
decomposed into two subsystems, Logic Tier and Data Tier. Logic Tier contains the core
logic of the application. Data Tier handles the storage of information of users and
submissions. The second server handles the operations of dynamic analysis. Because Cuckoo
Sandbox needs an Ubuntu environment to run, the side server will run with Ubuntu. The side
server is also decomposed into two subsystems, Logic Tier and Data Tier. Logic Tier of the
Ubuntu server actuates the Cuckoo Sandbox and operates on it by requests from the Main
Server. After getting results, it runs the dynamic analysis model to do classification, then

9

sends the outputs to the main server. Data Tier of the Ubuntu server stores requests from the
Main server temporarily.

3.2 Subsystem Services

3.2.1 Client

Figure 4: Subsystem decomposition of the Client Side.

10

CleaverWall client consists of mobile and desktop, however at its current iteration
they both have the same functionalities. The client subsystem is divided into three tiers:
Presentation, Logic and Data. Presentation tier is used to display and allow the user to
interact with the project. While the Presentation tier is a dummy, Logic tier handles all the
functionalities. Data tier works mostly like a storage, and is responsible for both managing
local temporary files and requesting data from the server, as well as sending data. The
presentation tier interacts with the Logic tier in order to make the UI functional, and the
Logic tier interacts with the Data tier to make the functionality meaningful.

3.2.1.1 Presentation Tier

Figure 5: Subsystem decomposition of the Client’s Presentation Tier.

The Presentation tier consists of AutoRouter and all the view classes. Autorouter is a
flutter library that allows easy transition between the views. Additionally, it automatically
handles page URLs, making it more user friendly on the web-side. View classes are flutter
classes that return build functions that build the UIs as described previously with the mock
UIs. They contain no functionality whatsoever -other than navigating through the app and
viewing server data etc.- , except for the uploadFileRoute, which requires the file upload
pop-up.

11

3.2.1.2 Logic Tier

Figure 6: Subsystem decomposition of the Client’s Logic Tier.

The Logic tier consists of business logic components (blocs) matching the
functionality contexts.

Blocs consist of 3 classes: bloc, state and event. States are blocs’ mutable variable
storage. Every bloc has only one state. Events are fired through the UI on specific
interactions and are used to notify the bloc that it needs to do something. Bloc itself is where
the logic runs: it tells the repositories to change or to request some data, and then modifies its
states. In return, UIs listening to the related bloc update themselves according to the new bloc
state.

AuthenticationBloc: This bloc handles the user login and signup. Also includes validation
logic for text boxes on both login and signup. Renamed from UserActionsBloc.

SubmissionBloc: The previous FilesBloc and Analysis Bloc have been merged into one
SubmissionBloc. It is responsible for temporary file data storage, and for requesting analysis
results from the server.

12

3.2.1.3 Data Tier

Figure 7: Subsystem decomposition of the Client’s Data Tier.

The Data tier stores and requests data and delivers it to the blocs whenever necessary.

AuthenticationRepository: This repository handles the current user data and requests such
as storing the user token and requesting a login. Renamed from UserRepository.

SubmissionRepository: This repository is responsible for storing the uploaded file until it’s
sent as well as the analysis data that is received from both the latest upload and from the
analysis history. Both analysis and files are currently managed in one repository because of a
potential future merge on the analysis and file classes. Renamed from FileRepository.

13

3.2.2 Main Server

3.2.2.1 Logic Tier

Figure 8: Subsystem decomposition of the Main Server’s Logic Tier.

Logic tier of the server is responsible for business decisions: using different modes,
holding states during script executions, communication with the Ubuntu server when
needed. It is the equivalent of Controller classes in other popular backend frameworks
such as ASP.NET. This layer also provides endpoints for clients in sets.

● UserViewSet: Handles the registration, login, and logout operations for the user.
● SubmissionViewSet: Implements create, list, and retrieve functionalities for

Submission objects. Accesses miscellaneous utils files and scripts to execute analysis.
If the submission mode requires a simple type of analysis, classifies and returns the
result. Else requests the Ubuntu server to do more expensive operations.

14

3.2.2.2 Data Tier

Figure 9: Subsystem decomposition of the Main Server’s Data Tier.

Data tier of the main server consists of model classes. It defines the entities and their
fields for the SQLite engine.

● User: Holds basic user data
● Submission: Holds information about submissions regarding the file, submission

details, results and whether they are still valid.

3.2.3 Ubuntu Server

3.2.3.1 Logic Tier

Figure 10: Subsystem decomposition of the Ubuntu Server’s Logic Tier.

15

Logic tier of the Ubuntu server is responsible for managing expensive operations with
the Cuckoo sandbox and ensuring a stable communication with it and the main server.

● app_utils: Only the class of this application that contains business logic. Manages
analysis requests, and contains functions to communicate with the Cuckoo sandbox
and apply classification.

3.2.3.2 Data Tier

Figure 11: Subsystem decomposition of the Ubuntu Server’s Data Tier.

Data tier of the Ubuntu server is only to store Requests for practicality.
● Requests: Holds basic information about current requests temporarily.

4. Development/Implementation Details
4.1 Client Side

The client-side uses Flutter. Other than the small helper packages -which can be peeked at the
pubspec.yaml file-, the project has three major dependencies: AutoRoute, Dio and Bloc.

AutoRoute is responsible for the navigation and navigation management throughout the app.
Through AutoRoute the project can easily create new views and integrate them into the
navigation tree. Also it enables a more clean URL management for the web client.

Dio is used for requests to the server-side. It excels more than the other request management
packages since it handles asynchronous requests better and it is more easily
traceable/debuggable with its interceptor availability.

16

Bloc is used for abstracting the client-side structure. Everything the user interacts with is
dumb, thanks to Bloc. Rather, they fire the corresponding event for the related bloc, and the
bloc handles the functionality for the UI. This does not only mean that there are no direct
“onPressed()” methods on the interface, but also that the interface never interacts with the
repositories directly. Such an abstraction opens up space for scalability.

The repositories also have their corresponding APIs. All APIs in the app utilize the same Dio
client. The reason why APIs are separated from the repositories is so that one part of the app
is only responsible for requests, and the other is responsible for handling/processing the
results of those requests.

In the end the client-side request structure looks along the lines of:

Figure 12: Client-side request structure

4.2 Server Side

On the server-side, we have 3 servers. Two are running backend applications we created, we
call: Main server and Ubuntu server. Main server is written with Django Rest Framework,
and the Ubuntu server is written with FastAPI Framework. Third one is the Cuckoo server
running on the same machine with the Ubuntu server. It is implemented with Python2 by
Cuckoo Foundation.
The Cuckoo server is responsible for dynamically analyzing (physically running the
suspected file on our Windows 7 virtual machine) the suspected file, and returning the
features to be fed to the machine learning model such as the Windows Api call sequence. The
Ubuntu server runs the smaller backend application we created using FastAPI, a lightweight
python backend framework. It is responsible for managing the Cuckoo server and providing
an interface for it to outside of the machine. Because the Cuckoo server is not very stable, the
Ubuntu server also benefits by separating a failure point without any significant overhead.
Since Cuckoo server strictly runs in an Ubuntu machine, we named the FastAPI server
managing it the Ubuntu Server. The Ubuntu server uses a sqlite3 server to store and log its
requests.
The general application logic is implemented in the Main server as the Django rest
Framework provides a scalable structure for applications with python. It uses an approach
similar to Model-View-Controller. Data layer is implemented in model files, views files
provide programmer interface to the application. The way business logic is implemented is

17

left up to the programmer and varies between conventions. Main server uses Django
Database which also is implemented over sqlite3. Additionally, both server-side applications
use various libraries related to data structures, databases, operating systems, machine
learning, and http.

4.3 Machine Learning Side

The malware executable dataset is taken from VirusShare and Academic API of VirusTotal is
used to label the dataset. Because of copyright issues, there are not huge datasets including
benign executables. There are repositories such as PortableFreeware but creating a dataset by
downloading executables from them is not practical. Therefore, we wrote a script to find all
of the executable paths in our PC’s. Then, extracted features from them to create a benign
dataset.

Google Colab Pro is utilized as the training environment because it provides Nvidia A100
GPU, which facilitates the training process. Ubuntu Virtual Machines are used for both
storing the malware executables and sandbox operations. Feature extraction for the training is
done inside one of the virtual machines.

For the first static model, XGBoost and Feed Forward Neural Network Architectures are
trained and their performance metrics are compared. Neural Network achieves 0.9636
validation accuracy and 0.06 false positive rate. XGBoost achieves 0.9835 validation
accuracy and 0.04 false positive rate. Therefore, XGBoost is selected as the classifier for this
static approach.

For the second static model, transfer learning method is used. The chosen base model for this
project is ResNet50, which has demonstrated strong effectiveness in various computer vision
tasks such as image classification, object detection, and segmentation. It has achieved
outstanding performance on benchmark datasets like ImageNet and COCO. To align with
ResNet50's input shape of (224,224,3), a Conv2D layer with 3 filters and a 3x3 shape is
added before the base model. This conversion transforms the input shape from (224,224,1) to
(224,224,3). The output layer of the base model is modified to a softmax layer with 4 units to
match the dataset of this project. The base model utilizes pre-trained weights. This model
achieves 0.9344 validation accuracy and 0.11 false positive rate.

Although the performance metrics of the second model is worse than the first model, its
operation elapsed time is less than the first model’s elapsed time for large sized executables.
Therefore, users can decide between the more accurate response and the quicker response for
their needs.

For the dynamic model, XGBoost is used. The model achieves 0.99 validation accuracy and
there is not any false positive among 6586 benign executables in the validation set.

18

5. Test Cases and Results
5.1 Client Side Test Cases

Client-side tests are done through Android Studio’s Flutter testing, where emulating
necessary conditions and mocking data is made easier.

Test ID CLS001

Test
Type/Category

Authorization

Title Successful Login

Procedure of
testing steps

1. Have an unauthorized session.
2. Send a request to the Django server with credentials that are

known to be true.
3. See that the response is successful and update the local token

accordingly.

Expected
results

Server should return a token upon sending it the right credentials, and
the token should be cached locally to be able to use authorized functions.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

19

Test ID CLS002

Test
Type/Category

Authorization

Title Token Expiration

Procedure of
testing steps

1. Have an authorized session.
2. Send any request to the Django server that requires authorization.
3. See that the response is unsuccessful.
4. End the current session.
5. Clear the local token.

Expected
results

Server should not do the operation and return the unauthorized
statement. Upon doing so, the user will log out from the current session
and the local token will be cleared from the cache.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID CLS003

Test
Type/Category

Authorization

Title Manual Logout

Procedure of
testing steps

1. Have an authorized session.
2. Send a logout request.
3. See that the response is successful.
4. End the current session.
5. Clear the local token.

Expected
results

Server should return a success. Then, the session will end and the cache
will be cleared.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

20

Test ID CLS004

Test
Type/Category

Authorization

Title Create User

Procedure of
testing steps

1. Have an unauthorized session.
2. Manually input a non-picked username and a password.
3. Send a request to the server to create a user with those

credentials.
4. See that the response is successful.

Expected
results

Server should successfully create a user with the given credentials and
return a success message.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID CLS005

Test
Type/Category

Submissions

Title File Type Restrictions

Procedure of
testing steps

1. Have an authorized session.
2. Locally select a file that is not an executable.
3. See that the local client does not let it happen.

Expected
results

The local client will not let the user select a non-executable file to
upload for malware checking.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

21

Test ID CLS006

Test
Type/Category

Submissions

Title File Size Restrictions

Procedure of
testing steps

1. Have an authorized session.
2. Locally select a file that is not at a desirable size.
3. See that the local client does not let it happen.

Expected
results

The local client will not let the user select a file too big to upload for
malware checking.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID CLS007

Test
Type/Category

Submissions

Title Queue Status

Procedure of
testing steps

1. Have an authorized session.
2. Successfully upload a few big files for file checking.
3. Upload one last small file successfully for file checking.
4. Request its queue status from the server periodically until it is

successful.

Expected
results

The uploaded file will stay in queue for a while, which will be observed
by the client, then it will be processed and have its result returned
successfully.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

22

Test ID CLS008

Test
Type/Category

Submissions

Title Retrieve History

Procedure of
testing steps

1. Have an authorized session.
2. Send a request to the server to return the submission history.
3. See that the response is successful.

Expected
results

The server will return the history data and return a successful message.

Priority/Severi
ty

Minor

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID CLS009

Test
Type/Category

Submissions

Title File Report

Procedure of
testing steps

1. Have an authorized session.
2. Select a present submission id.
3. Request its report.
4. See that the server successfully and correctly returned its scan

results.

Expected
results

The server will successfully return the file submitted via the
corresponding id’s scan results.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

23

Test ID CLS010

Test
Type/Category

Platform

Title Platform Behavior Check

Procedure of
testing steps

1. Two boolean checks to see whether the current client is on web
or on desktop:
kIsWeb and defaultTargetPlatform == TargetPlatform.windows

Expected
results

The debug lines on boolean checks will show the result, showing
whether the user is on a web or a desktop client.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

24

5.2 Server Side Test Cases

Test ID SRV001

Test
Type/Category

Integration

Title Main Server Availability

Procedure of
testing steps

1. Shutdown the Ubuntu server
2. Send a request to the main server that requires Ubuntu server
3. Verify that the main server responds successfully with an

appropriate error message

Expected
results

The main server should respond successfully and return an appropriate
error message when the Ubuntu server is down.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID SRV002

Test
Type/Category

Integration

Title Database Operations Race Condition

Procedure of
testing steps

1. Trigger multiple requests to the server to the same resource
simultaneously

2. Verify that the server returns accurate data without any conflict
or errors

Expected
results

The server should handle simultaneous requests without any race
condition errors and return accurate data accordingly.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

25

Test ID SRV003

Test
Type/Category

Integration

Title Main Server Update

Procedure of
testing steps

1. Start an execution in the Ubuntu server
2. Monitor the main server for the update of the results
3. Verify that the main server updates results when the execution in

the Ubuntu server is done

Expected
results

The main server should update the results correctly when the execution
in the Ubuntu server is done.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID SRV004

Test
Type/Category

Integration

Title Valid Result Availability

Procedure of
testing steps

1. Check if there is a valid result already exists
2. Send a request to the server with the valid data
3. Verify that the server responds immediately with the existing

result

Expected
results

The server should respond immediately if a valid result already exists
and return the data accordingly.

Priority/Severi
ty

Minor

Date Tested
and Test
Result

19.05.2023 and Failed. The server took time to respond.

26

Test ID SRV005

Test
Type/Category

Integration

Title Model Update

Procedure of
testing steps

1. Check if there is a valid result already exists
2. Send a request to the server to update the machine learning

model
3. Verify that the server updates the valid boolean fields to false

Expected
results

The server should update the valid boolean fields accordingly when the
model is updated.

Priority/Severi
ty

Minor

Date Tested
and Test
Result

19.05.2023 and Failed. Server did not automatically update the valid
boolean fields accordingly.

Test ID SRV006

Test
Type/Category

Integration

Title File Size Limit

Procedure of
testing steps

1. Send a file to the server that exceeds the maximum file size limit
2. Verify that the server rejects the file and returns an appropriate

error message

Expected
results

The server should reject files that exceed the maximum file size limit
and return an appropriate error message.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

27

Test ID SRV007

Test
Type/Category

Integration

Title Executable File

Procedure of
testing steps

1. Send a file to the server that is not a portable executable
2. Verify that the server rejects the file and returns an appropriate

error message

Expected
results

The server should only accept executable files without any issue.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID SRV008

Test
Type/Category

Integration

Title Required Fields

Procedure of
testing steps

1. Send a submission request to the server with some required fields
missing

2. Verify that the server rejects the request and returns an
appropriate error message

Expected
results

The server should reject submission requests without the required fields
and return an appropriate error message.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

28

Test ID SRV009

Test
Type/Category

Security

Title User Access Control

Procedure of
testing steps

1. Login as User A and attempt to access the submissions of User B
2. Verify that the server denies access and returns an appropriate

error message

Expected
results

The server should not allow users to access other users’ submissions and
return an appropriate error message.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID SRV010

Test
Type/Category

Integration

Title Submission Listing

Procedure of
testing steps

1. Login as User A and send multiple submissions to the server
2. Request the list of submissions for User A from the server
3. Verify that the server lists all the submissions of User A correctly

Expected
results

The server should correctly list all the submissions of a user when
requested.

Priority/Severi
ty

Minor

Date Tested
and Test
Result

19.05.2023 and Passed.

29

Test ID SRV011

Test
Type/Category

Integration

Title User Creation

Procedure of
testing steps

1. Send a request to create a new user with valid fields
2. Verify that the server creates the user and returns an appropriate

success message

Expected
results

The server should create a new user with valid fields and return an
appropriate success message.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID SRV012

Test
Type/Category

Integration

Title Session Termination

Procedure of
testing steps

1. Log in as User A
2. Log out as User A
3. Attempt to access any protected resource as User A
4. Verify that the server denies access and returns an appropriate

error message

Expected
results

The server should end the session of a user when they log out and deny
access to any protected resource when not authenticated.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

30

Test ID SRV013

Test
Type/Category

Security

Title User Access Control

Procedure of
testing steps

1. Login as User A and create multiple submissions
2. Login as User B and attempt to access the submissions of User A
3. Verify that the server denies access and returns an appropriate

error message
4. Login as User A and request the list of their own submissions
5. Verify that the server lists all the submissions of User A correctly

Expected
results

The server should only allow users to access their own submissions and
deny access to any other submissions.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID SRV014

Test
Type/Category

Security

Title Non-authenticated Access

Procedure of
testing steps

1. Attempt to access any protected resource without authentication
2. Verify that the server denies access and returns an appropriate

error message

Expected
results

The server should deny access to any protected resource without
authentication and return an appropriate error message.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

31

Test ID SRV015

Test
Type/Category

Integration

Title Dynamic Analysis

Procedure of
testing steps

1. Send a request to perform dynamic analysis
2. Verify that the server performs dynamic analysis successfully

and returns an appropriate success message

Expected
results

The server should perform dynamic analysis successfully and return an
appropriate success message.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID SRV016

Test
Type/Category

Integration

Title Server-to-Server Communication

Procedure of
testing steps

1. Send a request from outside of the main server to the Ubuntu
server

2. Verify that the Ubuntu server only listens to requests from the
main server

Expected
results

The Ubuntu server should only listen to requests from the main server.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

32

Test ID SRV017

Test
Type/Category

Functional

Title Test Cases for Duplicate Username Rejection

Procedure of
testing steps

1. Register a new user with a username that has already been used.

Expected
results

The system should reject the registration attempt and display an error
message indicating that the username has already been taken.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID SRV018

Test
Type/Category

Functional

Title Test Cases for Cuckoo Server Recovery

Procedure of
testing steps

1. Simulate a Cuckoo server failure.
2. Check if the Ubuntu server can recover from the failure and start

running cuckoo.

Expected
results

The Ubuntu server should be able to recover from the failure and start
running cuckoo.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Failed. Ubuntu server could not recover without a
re-run.

33

Test ID SRV019

Test
Type/Category

Functional

Title Test Cases for File Submission Rejection

Procedure of
testing steps

1. Submit a file without selecting any file.

Expected
results

The system should reject the file submission and display an error
message indicating that no file was selected.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

34

5.3 Test Cases for Algorithms for Machine Learning

Test ID ML001

Test
Type/Category

Functional

Title Test Cases for Successful Size of Optional Header Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the size of optional header from the
executable successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID ML002

Test
Type/Category

Functional

Title Test Cases for Successful Major Linker Version Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the major linker version from the
executable successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

35

Test ID ML003

Test
Type/Category

Functional

Title Test Cases for Successful Minor Linker Version Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the minor linker version from the
executable successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID ML004

Test
Type/Category

Functional

Title Test Cases for Successful Size of Code Header Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the size of code from the executable
successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

36

Test ID ML005

Test
Type/Category

Functional

Title Test Cases for Successful Size of Initialized Data Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the size of initialized data from the
executable successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID ML006

Test
Type/Category

Functional

Title Test Cases for Successful Size of Uninitialized Data Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the size of uninitialized data from the
executable successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

37

Test ID ML007

Test
Type/Category

Functional

Title Test Cases for Successful Address of Entry Point Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the address of entry point from the
executable successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID ML008

Test
Type/Category

Functional

Title Test Cases for Successful Base of Code Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the base of code from the executable
successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

38

Test ID ML009

Test
Type/Category

Functional

Title Test Cases for Successful Base of Data Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the base of data from the executable
successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID ML010

Test
Type/Category

Functional

Title Test Cases for Successful Image Base Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the image base from the executable
successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

39

Test ID ML011

Test
Type/Category

Functional

Title Test Cases for Successful Section Alignment Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the section alignment from the executable
successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID ML012

Test
Type/Category

Functional

Title Test Cases for Successful File Alignment Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the file alignment from the executable
successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

40

Test ID ML013

Test
Type/Category

Functional

Title Test Cases for Successful Major Operating System Version

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the major operating system version from
the executable successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID ML014

Test
Type/Category

Functional

Title Test Cases for Successful Minor Operating System Version Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the minor operating system version from
the executable successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

41

Test ID ML015

Test
Type/Category

Functional

Title Test Cases for Successful Byte to Pixel Conversion

Procedure of
testing steps

1. Input a byte data to the conversion algorithm.

Expected
results

The algorithm should convert the byte data to pixel data successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID ML016

Test
Type/Category

Functional

Title Test Cases for Successful Image Resizing

Procedure of
testing steps

1. Input a grayscale image to the resizing algorithm.

Expected
results

The algorithm should resize the image to the specified dimensions
successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

42

Test ID ML017

Test
Type/Category

Functional

Title Test Cases for Successful Output of First Static Model

Procedure of
testing steps

1. Input a dataset to the first static model.

Expected
results

The first static model should give softmax output successfully.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID ML018

Test
Type/Category

Functional

Title Test Cases for Successful Output of Second Static Model

Procedure of
testing steps

1. Input a dataset to the second static model.

Expected
results

The second static model should give softmax output successfully.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

43

Test ID ML019

Test
Type/Category

Functional

Title Test Cases for Successful Output of Dynamic Model

Procedure of
testing steps

1. Input a dataset to the dynamic model.

Expected
results

The dynamic model should give output successfully.

Priority/Severi
ty

Major

Date Tested
and Test
Result

19.05.2023 and Passed.

Test ID ML020

Test
Type/Category

Functional

Title Test Cases for Successful Size of Headers Extraction

Procedure of
testing steps

1. Input a dataset to the feature extraction algorithm.

Expected
results

The algorithm should extract the size of headers from the executable
successfully.

Priority/Severi
ty

Critical

Date Tested
and Test
Result

19.05.2023 and Passed.

44

6. Maintenance Plan and Details
To make our app maintainable, we will do the following checkups;

6.1 Regular Updates:

We will release updates on a regular basis to keep the frameworks, libraries, and
dependencies up to date. We will use the most recent versions of Flutter, Django, FastAPI,
and other related frameworks in the project. In the event of a breaking change in the
dependencies, the codebase will be modified according to those changes.

6.2 Bug Fixes:

We will continuously monitor the reported bugs and issues to address them
immediately. Reported issues will be prioritized and categorized according to their impact on
the application, and those bugs will be solved with regular bug fixes and patches.

6.3 Performance Optimization:

In the case of the identification of any performance issue, we will optimize the
database queries, API calls, and network communications to solve the bottlenecks in the
application and increase the performance.

6.4 Security Updates:

To decrease the security risks, all the software components will be kept up to date. We
will regularly perform vulnerability tests and security audits to make sure that the security of
the app meets sectoral standards.

6.5 Database Maintenance:

Regular SQLite database backups will be performed to prevent data loss. To increase
the performance of the database, it will be monitored regularly, and in the case of a
performance issue, optimization of query execution, indexing will be performed. If needed,
table structures will be updated.

6.6 Disaster Recovery and Backup Strategy:

We will make sure that the critical data is backed up to be used in the case of any
server failures or other catastrophic events.

6.7 Continuous Testing and Quality Assurance:

We will implement some automated testing frameworks such as unit testing,
end-to-end tests etc. Also, to identify potential issues in the code and improve code quality,
we will use a static code analysis tool named sonar [7].

45

7. Other Project Elements
7.1. Consideration of Various Factors in Engineering Design

7.1.1 Public Safety

Every year, ransomware alone costs the public $20 billion. Although some of these
attacks may not be caught by current signature-based anti-viruses, since CleaverWall utilizes
quick static model responses for malware detection, it could prevent some percentage of these
attacks, potentially saving millions of dollars worldwide.

7.1.2 Public Welfare

Governments or agencies are the backbone of welfare since they provide items and
services to the public. These entities employ a lot of personnel who are doing civil servant
jobs and who generally sit at a desk and work on computers from 8 to 5. Although these
people are expected to use computers very often, they are not always tech savvy and are more
likely to fall for malware scams while browsing the internet. Their time is too precious to
waste on such setbacks, and they're better off practicing their finesse for easing the
bureaucracy or helping people. CleaverWall is a potential helping hand in these situations by
providing quick feedback for malicious software and preventing people from falling for
potential scams. Also, since it is open-source, these entities could modify CleaverWall for
their own use, resulting in potential widespread use.

7.1.3 Global Factors

Since CleaverWall is open source, its success means that people will dissect and
analyze the project. Although it is not currently popular, a successful project that uses
machine learning could spark new ideas in the analyzers’ heads. Additionally, the file
recognition model could expand outside the malware detection application and find new uses
in other fields.

7.1.4 Cultural Factors

The project could only have a meta effect on the culture, meaning it could affect the
roots it came from: programmers. Although not for scale, the effect could be that of some
algorithms often taught in programming. It could set a common ground for a certain set of
coders, making them form sentences such as “It’s similar to Dijkstra” or “It would be nice to
use a Knapsack here”.

7.1.5 Social Factors

CleaverWall has nothing to do with any social status such as age, gender, ethnicity,
race etc. Therefore, social factors are not determining factors for CleaverWall usage. Also, it
seems like CleaverWall will not have any effect on society.

46

Table 1: Factors that can affect analysis and design.
Factor Effect level Effect
Public health 0 The project has nothing to do with

health.
Public safety 4 The static responses of the project are

expected to protect its users from
obvious scams by easy-viruses.

Public welfare 1 Governments or other agencies might
decide to provide the project, or a
version of theirs (since it is open
source) to their civil servant jobs so
that some simple setbacks could be
avoided, which in turn could increase
their efficiency.

Global factors 5 The project's success could lead to
some breakthroughs in file recognition
using ML, and even might extend the
use outside of malware detection.

Cultural factors 2 If successful, the project may have an
antsy effect on the programming
culture.

Social factors 0 The project is unlikely to impact the
current era of civilization.

7.2. Ethics and Professional Responsibilities

● Every academic paper and third-party organization that aided us was cited.
● We request the user's permission before adding the executable's features to the

dataset..
● We respect and protect our customers' privacy and data.

7.3. Teamwork Details

7.3.1. Contributing and functioning effectively on the team

Each member of our team is expected to actively contribute and function effectively
within their respective work packages and within the team as a whole. We recognize that
effective teamwork necessitates clear communication, active participation, and a dedication
to meeting deadlines and carrying out responsibilities.

We will establish communication channels to keep each other informed of project
developments and provide regular updates to ensure that we are all on the same page. We will
also be available to provide support and assistance to our teammates as needed.

47

In addition to our individual contributions, we recognize the value of working
together to achieve our common goals. We will welcome feedback, suggestions, and ideas
from all team members, regardless of role or seniority. We believe that by valuing and
incorporating each other's points of view, we can gain a more comprehensive understanding
of the project and achieve better results.

7.3.2. Helping creating a collaborative and inclusive environment

We believe that fostering a collaborative and inclusive environment is critical to the
development of a successful team. We will collaborate to create a safe and welcoming
environment in which everyone feels heard, respected, and valued.

We will actively listen to one another, provide constructive feedback, and encourage
open and honest communication to accomplish this. We recognize that different points of
view and experiences can help us identify opportunities and potential solutions that we might
not have considered otherwise. As a result, we will actively seek out and incorporate ideas
and suggestions from all team members.

We are committed to maintaining a sense of accountability and responsibility for our
actions, in addition to creating a supportive team culture. We will hold ourselves and each
other accountable for adhering to the principles of inclusivity and respect, and we will take
appropriate action if these principles are violated.

7.3.3. Taking lead role and sharing leadership on the team

We recognize that effective leadership is essential to the success of any team. While
leaders for each work package have been identified, we recognize that leadership is a shared
responsibility that extends beyond formal roles. We believe that everyone has valuable skills
and expertise to offer, and we encourage everyone on the team to take on leadership roles and
share their knowledge.

We will be responsible as leaders for ensuring that our team members meet their
deadlines and fulfill their responsibilities. We will also be available to provide advice and
support as needed. We recognize, however, that our success as a team is dependent on our
ability to collaborate and take collective ownership of our project. Therefore, we will actively
seek out and incorporate input from all members of the team, and encourage everyone to take
an active role in shaping our project's direction and success.

In conclusion, we believe that effective teamwork necessitates clear communication,
active participation, and a dedication to creating a collaborative and inclusive environment.
We think we can accomplish our common objectives and create a successful project by
adhering to these values and cooperating.

48

7.3.4. Meeting objectives

The initial project objectives and their current status are shown in the table below;
Table 2: Project Objectives and Status

Objective # Description Status

Analysis Discussion and determination of project-related
specifications and requirements.

Finished

Design Evaluating the Analysis and recommending a
detailed system design

Finished

Malware
Classifier
Development 1

Creating a malware classifier using features from
.asm files.

Cancelled

Malware
Classifier
Development 2

Creating a malware classifier using grayscale image
of an executable.

Finished

Malware
Classifier
Development 3

Creating a multimodal classifier combining 2
different static classifiers.

Finished

Malware
Classifier
Development 4

Creating a malware classifier using Windows API
sequence.

Finished

Server Side
Development 1

Providing an API that enables client side
applications to perform malware analysis remotely.

Finished

Server Side
Development 2

Utilizing a virtual environment to perform dynamic
analysis on suspected PE files.

Finished

Server Side
Development 3

Storing the malware data on user’s permission for
potential use.

In progress

Client Side
Development 1

Providing a clear and efficient UI and UX for the
users for web interface.

Finished

Client Side
Development 2

Providing a clear and efficient UI and UX for the
users for the desktop interface.

In progress

Client Side
Development 3

Linking the necessary tools for enabling MVP
features such as static analysis and quarantining
malicious files to the desktop application.

In progress

49

Objective # Description Status

Testing Testing the implemented parts of the project Finished

7.4 New Knowledge Acquired and Applied

● Setting up a Flutter desktop app.
● Using AutoRoute.
● Using Dio.
● Extracting tokens from HTTP.
● Picking files on a client.
● Utilizing better scalability practices.
● Using Django Rest Framework in general.
● Creating a FastAPI server.
● Utilizing different database engines such as sqlite3 and django database which is also

implemented over sqlite3.
● Learned that different frameworks’ approaches to asynchronous programming can

differ vastly. Example: Some may even not support (Django rest framework) a thread
created by an api call creating another thread, responding and terminating before the
sub-thread.

● Restricting APIs’ availability to outside: IP check versus using api keys (we chose to
require api keys)

● Miscellaneous things about file structures etc: disassemblers, hashing files and
uniques of those hashes (md5 versus sha256 very).

● Running ML models on files efficiently (what not to write to disc, when to load sth to
memory, how python handles that by default)

● What to do and not to do in project organization with a lot of sub projects: readme and
requirements file place organizations, using a git ignored keys.json.

● Carefully defining package versions in requirements
● Setting up the Cuckoo environment and testing malware in a Virtual Machine
● Developing in an Ubuntu environment
● Static malware analysis
● Dynamic malware analysis
● Utilizing Class Weights for training an imbalanced dataset.

8. Conclusion and Future Work
CleaverWall is an open-source malware detection and classification tool for malicious
portable executable files. It employs static and dynamic analysis of the executable files. The
two methods of its static analysis are analyzing PE header features of executables and
converting executables into grayscale images to use Convolutional Neural Networks.

50

CleaverWall does its dynamic analysis by running the executable on a sandbox in order to
analyze its Windows API call.

One of our key features is being flexible as we offer many analysis options for our users. We
hope this flexibility becomes a signature of our project, leaving behind all the quick-scans
and thorough-scans; and providing people with whatever that suits their current needs.

As stated before, CleaverWall is an open source project, and it aims to stay so. Our goal is to
surpass other open source anti-malwares, given that they perform poorly. However, the real
challenge begins with the big opponents. Although it is harsh, with considerable time and
sizable users we believe we can match their huge datasets.

51

9. Glossary
Malware: Harmful software aiming to cause damage to computer systems.
Sandbox: Testing environment on which potentially harmful softwares can be run safely.

52

10. References
[1] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware images,”
Proceedings of the 8th International Symposium on Visualization for Cyber Security - VizSec
'11, 2011.

[2] D. Gibert, C. Mateu, J. Planes, and R. Vicens, “Using convolutional neural networks for
classification of malware represented as images - journal of computer virology and hacking
techniques,” SpringerLink, 27-Aug-2018. [Online]. Available:
https://link.springer.com/article/10.1007/s11416-018-0323-0. [Accessed: 19-May-2023].

[3] M. Kalash, M. Rochan, N. Mohammed, N. D. Bruce, Y. Wang, and F. Iqbal, “Malware
classification with deep convolutional Neural Networks,” 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), 2018.

[4] “Grayscale images of malware samples belonging to different malware ...” [Online].
Available:
https://www.researchgate.net/figure/Grayscale-images-of-malware-samples-belonging-to-diff
erent-malware-families-in-BIG-2015_fig3_358487073. [Accessed: 19-May-2023].

[5] Y. Ki, E. Kim, and H. K. Kim, “A novel approach to detect malware based on API call
sequence analysis,” International Journal of Distributed Sensor Networks, vol. 11, no. 6, p.
659101, 2015.

[6] “Automated malware analysis,” Cuckoo Sandbox - Automated Malware Analysis.
[Online]. Available: https://cuckoosandbox.org/. [Accessed: 19-May-2023].

[7] “What is clean code, all code fit for development and production.” Sonar [Online].
Available: https://www.sonarsource.com/solutions/clean-code/. Accessed: 19-May-2023

53

https://www.sonarsource.com/solutions/clean-code/

